
 

 

An Enhanced Data Distribution with Protection of 
Agent Colluding Attacks 

Ms. P.Brindha1  Prof. P.S.Balamurugan2  Ms. S.Kalai selvi3 

 
1(PG Scholar (CSE), Karpagam University, Coimbatore, Tamilnadu, India) 

2(Research Scholar, Anna University, Coimbatore, Tamilnadu, India) 
3(Assistant Professor (Applied Sciences), Velalar College of Engineering and Technology, Erode, Tamilnadu, India) 

 
 
 
Abstract----In a data distribution scenario the sensitive data given 
to agents can be leaked in some cases and can be found in 
unauthorized places. We consider the addition of fake objects to 
the distributed set which do not correspond to real entities but 
appear realistic to the agents. The distributor must assess the 
likelihood that the leaked data came from one or more agents, as 
opposed to having been independently gathered by other means. 
We also present data allocation strategies and algorithms for 
distributing objects to agents, in a way that improves our chances 
of identifying a leaker. Our main idea is to prevent the agents 
from comparing their data with others to identify fake objects. A 
Semantic Inference Model (SIM) is used here to find out the 
probability of identifying dependency among the data distributed 
to various agents. Using this technique semantic inference graph 
(SIG) is drawn denoting the links among data sets. 
 
Keywords -agent colluding, data inference, database security, 
guilty agent probability 

I. INTRODUCTION 

Traditionally, leakage detection is handled by watermarking, 
e.g., a unique code is embedded in each distributed copy. If that 
copy is later discovered in the hands of an unauthorized party, 
the leaker can be identified. Watermarks can be very useful in 
some cases, but again, involve some modification of the 
original data. Furthermore, watermarks can sometimes be 
destroyed if the data recipient is malicious. So we consider the 
option of adding “fake” objects to the distributed set. Such 
objects act as a type of watermark for the entire set, without 
modifying any individual members. If it turns out that an agent 
was given one or more fake objects that were leaked, then the 
distributor can be more confident that agent was guilty. The 
approach used here to identify the probability of agent 
colluding attacks is Semantic inference model (SIM). A 
semantic Inference Graph (SIG) is drawn that links all the 
related attributes, which can be derived by identifying attribute  
dependency from data dependency, database schema, and 
semantic related knowledge. Based on the SIM, the violation 
 
 
 

detection system keeps track of a user’s query history. When a  
new query is posed, all the channels where sensitive 
information can be inferred will be identified. If the probability  
of inferring sensitive information exceeds a pre-specified 
threshold, then the current query request will be denied. In 
section 2 we start by our problem setup and notations whereas 
section 4 and 5 discuss briefly about the analysis of agent guilt 
model and the various data allocation strategies respectively. 
Our technique to calculate the probability of agent colluding 
attacks is explained in section 6. Access control mechanisms 
are commonly used to protect users from the divulgence of 
sensitive information in data sources. However, such 
techniques are insufficient because malicious users may access 
a series of innocuous data, and from the received answers, they 
can employ such information to retrieve data. 

II. PROBLEM SET UP AND NOTATIONS 

II.1. Agent and data requests 

The data to be distributed are denoted as objects t1, t2,..,tn and 
the agents to whom the data is handed over are denoted as R1, 
R2,…,Rn. The allocation of objects is performed based on two 
choices. Agents themselves can request data that satisfy some 
condition or the distributor can allocate data randomly to agents 
if they do not insist with conditions. They are denoted as 
explicit and sample data requests respectively. Agents are also 
chosen by analyzing various techniques. 

II.2. Data objects 

The data that is to be distributed if given simply original, it is 
subjected to be leaked or used in malicious ways. In order to 
prevent this, watermarks are used in previous days. Now we 
introduce the concept of adding fake objects along with original 
data during allocation to agents. Since allocation is based on 
explicit and sample requests of agents, fake objects or tuples 
also have various instances. Each type of request will have two 
instances one with fake object and another without fake object.  

II.3. Agent guilt model analysis  

To estimate how likely it is that a system will be operational 
throughout a given period, we need the probabilities that 
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individual components will or will not fail. A component 
failure in our case is the event that the target guesses an object 
of S. The component failure is used to compute the overall 
system reliability, while we use the probability of guessing to 
identify agents that have leaked information. The component 
failure probabilities are estimated based on experiments, just as 
we propose to estimate the pts. Similarly, the component 
probabilities are usually conservative estimates, rather than 
exact numbers.  

III. DATA ALLOCATION STRATEGIES 

Our main focus is on the data allocation problem: how can the 
distributor “intelligently” give data to agents in order to 
improve the chances of detecting a guilty agent? As illustrated 
in Fig. 1, there are four instances of this problem we address, 
depending on the type of data requests made by agents and 
whether “fake objects” are allowed. The objects are designed to 
look like real objects, and are distributed to agents together 
with T objects, in order to increase the chances of detecting 
agents that leak data. We represent our four problem instances 
with the names EF, EF, SF, and SF, where E stands for explicit 
requests, S for sample requests, F for the use of fake objects, 
and F for the case where fake objects are not allowed. Note that, 
for simplicity, we are assuming that in the E problem instances, 
all agents make explicit requests, while in the S instances, all 
agents make sample requests. 

III.1. Data request with explicit condition 

III.1.1. Data Request with e-random 
Here we combine the allocation of the explicit data request with 
the agent selection of e-random. Initially we find agents that are 
eligible to receiving fake objects in O (n) time. Then, the 
algorithm creates one fake object in every iteration and 
allocates it to random agent.  
III.1.2. Data Request with e-optimal 
Still to improve the algorithm for allocation explicit data 
request we are combining this algorithm with the agent 
selection for e-optimal method. This algorithm based on 
e-optimal makes a greedy choice by selecting the agent that will 
yield the greatest improvement in the sum-objective.  

III.2. Data request with sample 

III.2.1. Data Request with s-random 
Algorithm s-random allocates objects to agents in a 
round-robin fashion. After the initialization of vectors d and a, 
the main loop is executed while there are still data objects 
(remaining > 0) to be allocated to agents. In each iteration of 
this loop, the algorithm uses function SELECT OBJECT () to 
find a random object to allocate to agent Ui. This loop iterates 
over all agents who have not received the number of data 
objects they have requested.  
III.2.2. Data Request with s-overlap 
In the previous section the distributor can minimize both 
objectives by allocating distinct sets to all three agents. Such an 
optimal allocation is possible, since agents request in total 
fewer objects than the distributor has. This is overcome by 

presenting an object selection approach for s-overlap. Here in 
each iteration of allocating sample data request algorithm, we 
provide agent Ui with an object that has been given to the 
smallest number of agents. So, if agents ask for fewer objects 
than jTj, agent selection for s-optimal algorithm will return in 
each iteration an object that no agent has received so far. Thus, 
every agent will receive a data set with objects that no other 
agent has. The running time of this algorithm is O (1). 
III.2.3. Data Request with s-max 
This algorithm we present here is termed as object selection for 
s-max. If we apply s-max to the example above, after the first 
five main loop iterations in algorithm of allocating data request, 
the Ri sets are: 
R1 = {t1, t2}; R2 = {t2}; R3 = {t3}; and R4 = {t4} 
In the next iteration, function SELECT OBJECT () must decide 
which object to allocate to agent U2. We see that only objects t3 
and t4 are good candidates, since allocating t1 to U2 will yield a 
full overlap of R1 and R2. 

IV. RELATED WORK 

The guilt detection approach we present is related to the data 
provenance problem [3]: tracing the lineage of S objects 
implies essentially the detection of the guilty agents. Tutorial 
[4] provides a good overview on the research conducted in this 
field. Distribution of data is well expressed in [5] with various 
techniques. Data handled electronically [33] serves good for 
our survey of data distribution. Our problem formulation with 
objects and sets is more general and simplifies lineage tracing, 
since we do not consider any data transformation from Ri sets 
to S. As far as the data allocation strategies are concerned, our 
work is mostly relevant to watermarking that is used as a means 
of establishing original ownership of distributed objects. Our 
approach and watermarking are similar in the sense of 
providing agents with some kind of receiver identifying 
information.  

V. SEMANTIC INFERENCE MODEL 

To represent the possible colluding attacks from any agents to 
the different data allocation strategies, here we use the semantic 
inference model. SIM represents dependent and semantic 
relationships among attributes of all the entities in the 
information system. The related attributes (nodes) are 
connected by semantic inference graph and the inference 
introduced by semantic links is computed using Computational 
Probability Table for nodes connected by semantic links. 
 
V.1. Semantic inference graph 

In order to perform inference at the instance level, we 
instantiate the SIM with specific entity instances and generate a 
SIG. Each node in the SIG represents an attribute for a specific 
instance. The attribute nodes in the SIG have the same CPT as 
in the SIM because they are just instantiated versions of the 
attributes in entities. As a result, the SIG represents all the 
instance-level inference channels. 
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Fig2. Semantic Inference model. Entities are interconnected by schema reltions (diamond) and semantic relations (hexagon). The 
related attributes (nodes) are connected by their data dependancy, schema and semantic links. 
 

V.1.1. Dependency link 

When a SIM is instantiated, the dependency within- entity is 
transformed into dependency-within-instance in the SIG. 
Similarly, the dependency-between-related-entities in the SIM 
is transformed into a dependency between two attributes in the 
related instances. This type of dependency is preserved only if 
two instances are related by the instantiated schema link. That 
is, if attribute B in instance e2 depends on attribute A in 
instance e1, and instances e1 and e2 are related by R. 

V.1.2. Schema link 

The schema links between entities in the SIM represent “key, 
foreign-key” pairs. At instance level, if the value of the primary 
key of an instance e1 is equal to the value of the corresponding 
foreign key in the other instance e2 which can be represented as 
R(e1, e2), then connecting these two attributes will represent 
the schema link at the instance level. Otherwise, these two 
attributes are not connected. 

V.1.3. Semantic link 

At the instance level, assigning the value of the source node to 
“unknown” disconnects the semantic link between the 
attributes of two instances. On the other hand, if two instances 
have a specific semantic relation, then the inference probability 
of the target node will be computed based on its CPT and the 
value of the source node. 

VI. DATABASE DESIGN 

Following example explain how inference affects data leakage. 
 
Table1. Database1 

NAME SALARY  
 

CITY 

Babu 45 K Coimbatore 
 

Anna 50 K Coimbatore 
 

Jackson 
 

60 K  Chennai 

 
Name:  string 
Salary:  integer 
City:  string 
 
Table2. Database2 

CITY  
 

SALARY 

Coimbatore 45K 
 

Coimbatore 50K 
 

Chennai 60K 
 

 
In this TABLE, the attribute City does not functionally 
determine attribute Salary, as both Anna and Babu live in 
Coimbatore but they earn different salaries. As a result, schema 
based inference detection systems do not report any inference 
threat in this database. However, if a user knows that Jackson is 
the only employee who lives in Chennai, the user can infer the 
salary of Jackson by querying the database to find the salary of 
the employee who lives in Chennai in the second table. This 
example illustrates that simply examining the database schema 
to detect inference is not sufficient, and taking the data in the 
database into consideration can lead to the detection of more 
inferences. We accessing them when fake objects created to 
any agent, probability will be calculated and on each fake 
object that probability goes on increasing. If probability is 
below threshold then fake object is allocated to that agent but if 
probability exceeds specified threshold, then that agent is not 
getting fake objects. This is the case for single agent. In the 
same way for multi agent environment, when different agent 
tries to collaborate to increase probability of accessing 
information, then probability of the  agent will goes on 
increasing whose information other  agents are accessing. Here 
basically we have tried to implement inference controlling 
mechanism for creating fake object for all agents and their 
probability will be calculated. Consider two dependent objects 
A and B. The degree of dependency from B to A can be 
represented by the conditional probabilities, 

pi|j =Pr (B=bi|A=aj) 
The conditional probabilities of the child object (B) given all of 
its parents (A) are summarized into a conditional probability 
table (CPT) that is attached to the child object. The semantic 
inference from a source object to a target object is depicted in 
Fig 3.a and corresponding CPT is shown in Fig 3.b. 
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Fig 3.a. Target node T with semantic link from source node Ps 
and dependancy link from parent nodes P1…Pn 
 
 

 
Fig 3.b. The CPT of target node T summarizes the conditional 
probabilities of t given values of Ps and P1…Pn. For eg. 
Pr(T-t1/Ps=unknown, p1=v11, pn=vn1)-0.5. 
 
For secure data allocation a model is developed for evaluating 
inference based on the past fake object allocation sequences. 
Semantic Inference Model (SIM) consists of data dependency, 
relational database schema, and domain-specific semantic 
knowledge. So Semantic Inference Model (SIM) representing 
them as probabilistic inference channels to access any data 
from the system. Probability is calculated as conditional 
probability, given as Pi|j = Pr (B=bi|A=aj). It represents the 
occurrence of A and b and Co occurrences of A and B. Also it 
represents the dependency from B to A. Initially probability 
and data probability is set to 0.0. When data is allocated to first 
agent, probability is calculated as number of fake objects is 
allocated to specific agent within number of data is divided by 
total number of times agent has been allocated data within 
number of fake objects. This probability will be stored in log. 
Next time when same agent is allocated for objects, probability 
will be checked from log. If it is below threshold objects can be 
allocated to the same agent, otherwise the other type of fake 
object is created and allocated to that agent. 
 
Table3. Probability calculation (single agent) 

Agent  Access 
Data from 
Agent  

Probability Total 
Count 

Count 

X  0.0 0 0 
 A 0.1 0 0 
 A 0.2000 1 1 
 A 0.4000 2 2 
 A 0.8000 3 3 
X A 0.0 0 0 
 A 0.1 0 0 
 B 0.2000 1 1
 B 0.3000 2 0 

Agent: string 
Access data from agent: integer 
Probability: integer 

Total count: integer, Count: integer 
  
Probability = (count / Total Count) + previous (Probability) 
Total Count = number of times objects allocated 
Count = number of time fake objects allocated  
 
TABLE3 gives an idea about probability calculation. Two 
variables are maintained for it count and Total Count. Initially 
these two variables are set to 0. First time probability is 
calculated as 0.1. Difference between above two examples is 
that, in first case agent is accessing data from same table and in 
second case agent is accessing data from two different tables. 
Depending on that count will be calculated differently. When 
Agent A is accessing data of Agent D, probability of A will be 
increased and data probability of Agent D will be increased. 
Same goes on continuing, if probability or data probability 
which one is reaching to threshold earlier, allocation is denied 
or new allocation done.  
TABLE4 explains the probabilistic calculation for multiuser 
environment. Probability calculation is same like single agent. 
Difference is, here data probability calculation is for agent 
whose data other agent are accessing. 
 
Table4.  Probability calculation (Multiple agents) 

Agent Accessing 
data from 
other 
agent  

Data 
probability 

Data 
count1 

Data 
count2 

 D 0.0 0 0 
A D 0.1 0 0 
B  D 0.2000 0 1 
C  D 0.3000 0 2 
B D 0.6333 1 3 
A D 0.8333 1 4 

 
Data probability: continuous 
Data count1: integer 
Data count2: integer 
Data Probability = (datacount1 / datacount2) + Previous (Data 
Probability) 
Datacount1 = Keeping record of fake objects allocated 
Datacount2 = Total number of count incrementing depending 
on each access. 

VII. SIMULATION SETUP AND RESULTS 

To demonstrate the effectiveness of our semantic inference 
model, we implement the concept with MATLAB. Initially, we 
formed a database with several values stored in it. Then we 
investigated how these data are allocated to agents depending 
on their requests. Different techniques are used to choose data 
and the agents. Finally, we calculate the probability of each 
allocation to a specific agent which shows the optimized 
allocation of the data. Let the threshold value be 0.5. If the 
calculated probability exceeds this value, then another set of 
fake data record is added to the original data. 
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Fig 4.a. Database of records for distributing to the agents 
 
This is repeated until the inference probability reaches 
or gets below the threshold value. The figure 4.a. 
displays the database that containing the collection of 
data records. These data are distributed to the agents 
based on their request either explicit or sample. The 
agent and object selection are done with different 
techniques. Finally, SIM is implemented to find the 
probability for each agent.  

 

 
Fig 4.b.SIM probability calculation 
 

Fig 4.b displays the Semantic Inference model 
implementation. Here the agent selected in this 
iteration is 2. The computational probability of the 
agent 2 is found to be 9.1667e-004. This is beyond the 
threshold value 0.5. So another record of fake objects 
is added as shown. Similarly every time allocation 
needs to be made, probability is calculated for the 
selected agent and the allocation is done.  

VIII.  PERFORMANCE EVALUATION 

The performance of our proposed model is compared 
with the existing system. . In this performance 
evaluation we are also finding how effective the 
approximation is. We also present the evaluation for 
sample requests and explicit data requests. The 
experimental result shows that our approach of using 
the semantic inference graph performs better than the 
existing approaches. 
 

 
Fig 5. Performance Evaluation for proposed model 
 
Hence the fig 5. illustrates the confidence of the 
proposed model with previous algorithms based on 
explicit and sample requests. The rate of detection is 
improved in our model which improves the 
performance of the system. 
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IX. CONCLUSION 

We have shown that it is possible to assess the 
likelihood that an agent is responsible for a leak, based 
on the overlap of his data with the leaked data and the 
data of other agents, and based on the probability that 
objects can be “guessed” by other means. We are 
proposing our enhanced approach for detecting the 
guilty agents. In this technique we use the semantic 
inference model that represents the probability of 
possible colluding attacks from any agents to the 
different data allocation strategies. SIM represents 
dependent and semantic relationships among 
attributes of all the entities in the information system. 
In future the extension of our allocation strategies can 
handle agent requests in an online fashion (the 
presented strategies assume that there is a fixed set of 
agents with requests known in advance) can be 
implemented. 
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